
ANR005
PROTEUS-II ADVANCED DEVELOPER

GUIDE

VERSION 1.4

JULY 19, 2023

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

Revision history

Manual
version

FW
version

HW
version Notes Date

1.0 1.0.0 2.1

• Initial version

• New corporate design and structure

• Updated chapter for custom firmware
development

November
2018

1.1 1.1.0 2.1
• Updated file name to new AppNote name

structure. Updated important notes, legal
notice & license terms chapters.

June 2019

1.2 1.1.0 2.1 • Updated address of Division Wireless
Connectivity & Sensors location

October
2019

1.3 1.1.0 2.1 • Added information on Bluetooth® stack
version

January
2021

1.4 1.1.0 2.1 • Updated Important notes, meta data and
document style

July 2023

1
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

Abbreviations

Abbreviation Name Description

BTMAC Bluetooth® conform MAC address of the module used
on the RF-interface.

CS Checksum Byte wise XOR combination of the preceding fields.

DTM Direct test mode Mode to test Bluetooth® specific RF settings.

GAP Generic Access
Profile

The GAP provides a basic level of functionality that all
Bluetooth® devices must implement.

I/O Input/output Pinout description.

LPM Low power mode Mode for efficient power consumption.

MAC MAC address of the module.

MTU Maximum
transmission unit Maximum packet size of the Bluetooth® connection.

Payload The intended message in a frame / package.

RF Radio frequency Describes wireless transmission.

RSSI Receive Signal
Strength Indicator

The RSSI indicates the strength of the RF signal. Its
value is always printed in two’s complement notation.

Soft device Operating system used by the nRF52 chip.

SPI Serial peripheral
interface Allows the serial communication with the module.

UART

Universal
Asynchronous
Receiver
Transmitter

Allows the serial communication with the module.

[HEX] 0xhh Hexadecimal
All numbers beginning with 0x are hexadecimal
numbers. All other numbers are decimal, unless
stated otherwise.

2
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

Contents

1 Introduction 4

2 Prerequisites 4

3 Bluetooth profiles 4

4 WE SPP-like profile 5
4.1 Generic Access Protocol (GAP) . 5
4.2 Generic Attribute Profile (GATT) . 6

4.2.1 Data length extension . 6
4.2.2 Company identifier . 6
4.2.3 UUID . 6
4.2.4 Primary Service . 6
4.2.4.1 Characteristics . 6

4.3 Bluetooth LE packet content . 7
4.3.1 RF-Packet format . 7
4.3.2 Advertising packet content . 8
4.3.3 Scan response packet content . 8

5 App development 9
5.1 Connection setup message charts . 9

5.1.1 No security and authentication . 9
5.1.2 Just works pairing . 9
5.1.3 Static pass key pairing . 10

5.2 Enable notifications . 12
5.3 Bonding development hints . 13
5.4 Nordic Bluetooth LE UART example app as base 13

6 Custom firmware development 15
6.1 Custom firmware services of Würth Elektronik eiSos 15
6.2 Important information for custom firmware development 16

6.2.1 How to adapt Nordic Semiconductor SDK examples to run on the
Proteus-II hardware? . 20

6.2.2 Firmware development hints . 22

7 References 24

8 Important notes 25

3
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

1 Introduction

This document provides all the information necessary to integrate the Proteus-II Bluetooth® LE
module into user application. The standard features available with the default firmware are
described in detail. Further, key parameters of the Bluetooth® LE specifications necessary to
ensure interoperability with Bluetooth® compliant third party devices are listed and described
in detail.
Besides of this, valuable hints to start an app development as well as to start a custom firmware
development on base of the Proteus-II hardware are given in the subsequent chapters.

2 Prerequisites

A basic understanding of the Bluetooth® LE standard as well as application development back-
ground on the desired platform is necessary to fully understand this document.
The manual of Proteus-II [4, 5, 6] contains basic information of the standard firmware and the
software interfaces provided by the application. Please read this manual carefully and com-
pletely before using its information.
Würth Elektronik eiSos does not provide general support towards the Bluetooth® standard or
smart device app development (independent of the platform).

3 Bluetooth profiles

Bluetooth® specification uses so called "Profiles" to specify the general behavior of a Bluetooth®

enabled device to communicate with other Bluetooth® devices. Profiles are built on the Bluetooth®

standard to clearly define what kind of data is transmitted. The device’s application determines
which profiles it must support, from hands-free capabilities to heart rate sensors to alerts and
more.
A device may support more than one profile. For two devices to be compatible, they must sup-
port the same Bluetooth® LE profile.
The Proteus-II module ships with the so called WE SPP-like (Serial Port Profile) profile created
based on the Generic Attribute profile (GATT). This profile aims at providing a Bluetooth® LE
based wireless replacement to a serial cable connection.

4
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

4 WE SPP-like profile

This section contains the key data of the WE SPP-like profile. Each device in the network must
support this profile to communicate with a Proteus-II device with the default SPP-like firmware.
Customer applications may support and/or provide other profiles, services or interfaces.

4.1 Generic Access Protocol (GAP)

The main purpose of this protocol is to describe the parameters of lower layers of the Bluetooth®

stack including discovery, scanning and security capabilities. The Proteus-II GAP specifications
are listed below:

• Appearance as specified in the user setting RF_Appearance.

• Device name as specified in the user setting RF_DeviceName.

• Device address (6 Byte MAC) of type "public", see user setting FS_BTMAC (0x0018DAxxxxxx)

• Timings:

– See user settings RF_ScanTiming and RF_ScanFlags for scan and advertising related
timing parameters like

◦ Advertising interval

◦ Scan window

◦ Scan interval

◦ Connection setup timeout

– See user setting RF_ConnectionTiming for connection related timing parameters like

◦ Minimum connection interval

◦ Maximum connection interval

◦ Connection supervision timeout

– See user setting RF_TXPower for TX power value.

– See user setting RF_SecFlags for security settings.

– Slave latency: 0

– Peripheral requests for connection parameters update if central has differing con-
nection parameters

◦ Connection parameters update (initial): 5s

◦ Connection parameters update (periodic): 10s

◦ Connection parameters update counter before connection shut down: 3

5
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

4.2 Generic Attribute Profile (GATT)

4.2.1 Data length extension

The Proteus-II supports up to 243 Byte of payload data. To use this feature the data length
extension has to be requested by the central device. In this case, the GATT MTU size must be
243 Byte payload + 1 Byte Header + 3 Byte NUS header, which is 247 Byte in total.
The PDU size should be 243 Byte payload + 1 Byte Header + 3 Byte NUS header + 4 Byte
Bluetooth® LE header, which is 251 Byte in total.

Check also the message charts in chapter 5 to see the MTU request in the
connection setup process.

4.2.2 Company identifier

The Bluetooth® listed company identifier of Würth Elektronik eiSos (formerly Amber wireless
GmbH) is 0x031A (794dec).

4.2.3 UUID

The Proteus-II uses a 128Bit UUID of type "Vendor specific". The base UUID is adapted by the
16Bit UUIDs of the primary service and the corresponding characteristics.
These UUIDs are only allowed to be used when one of the two corresponding devices is a
Proteus-II module or contains a Proteus-II module of Würth Elektronik eiSos which have pre-
installed firmware.

Service 16Bit UUID Full UUID
Proteus-II base 6E400000-C352-11E5-953D-0002A5D5C51B
Proteus-II primary service 0x0001 6E400001-C352-11E5-953D-0002A5D5C51B
RX_CHARACTERISTIC 0x0002 6E400002-C352-11E5-953D-0002A5D5C51B
TX_CHARACTERISTIC 0x0003 6E400003-C352-11E5-953D-0002A5D5C51B

By means of the user setting RF_SPPBaseUUID the base UUID can be adapted
to generate a custom profile.

4.2.4 Primary Service

4.2.4.1 Characteristics

• The first characteristic of the Proteus-II primary service is RX_CHARACTERISTIC:

6
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

– The data is sent from central/client to peripheral/server using a write command.

– Server:

◦ Has to allow a write command as well as a write without response command.

– Client:

◦ Use write command to send data to the server.

• The second characteristic of the Proteus-II primary service is TX_CHARACTERISTIC:

– The data is sent from peripheral/server to central/client using a notification.

– Server:

◦ Has to allow/enable notifications. Notify client/central when sending data.

◦ When the notification enable bit is written in the CCCD (Client Characteristic Con-
figuration Descriptor) by the central, the peripheral prints a CMD_CHANNELOPEN_RSP

on the UART to signalize that the peripheral can send data to the central now.
The central can only write this bit, when the configured security level of the pe-
ripheral has been met.

– Client:

◦ Has to enable notifications.

The permissions to access the characteristics is determined by the security mode of the mod-
ule.

Proteus-II
security mode CCCD read CCCD write, RX attribute read/write, TX

attribute read/write

No security no protection, open
link no protection, open link

Just works no protection, open
link

require encryption, but no MITM protection
(Mode 1, Level 2)

Static pass key no protection, open
link

require encryption and MITM protection
(Mode 1, Level 3)

4.3 Bluetooth LE packet content

4.3.1 RF-Packet format

To identify the type of data transmitted via Bluetooth® LE, the data protocol on the radio con-
tains a packet header. Thus, the standard Bluetooth® LE payload has to match the following
format to be understood by the Proteus-II. Other Bluetooth® LE frames will be discarded:

7
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

Bluetooth® LE Payload
Header Payload data
0x01 ΦST Bytes

Table 1: RF-packet format to transmit data

Bluetooth® LE Payload
Header Sequence number Fragment ID Payload data
0x04 1 Byte 1 Byte ΦST − 2 Bytes

Table 2: RF-packet format for fragmented data of the high throughput mode (see ANR006 [3])

The value ΦST is 243 Bytes.

4.3.2 Advertising packet content

The standard Proteus-II advertising packet contains the following data:

• Advertising data flags

• The UUID (128 Bit Proteus-II primary service UUID) of the WE SPP-like profile

• TXPower level (1 Byte in two’s complement notation, only in command mode)

• Proteus-II device name as Shortened Local Name (up to 5 Bytes in command mode, up
to 8 Bytes in peripheral only mode)

4.3.3 Scan response packet content

The scan response packet is requested during scan if active scanning is enabled. The standard
Proteus-II scan response packet contains the following data:

• Manufacturer data (1 byte header, up to 19 bytes payload) in RF-packet format (see
Table 1) using the Würth Elektronik eiSos company identifier 0x031A. This manufacturer
data is used to realize the Beacon feature (see command CMD_SETBEACON_REQ in the user
manual [4, 5, 6]).

8
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

5 App development

The definition of the WE SPP-like profile (see section 4) in combination with the message
charts of chapter 5 are sufficient to develop custom apps for mobile devices. To implement this
profile from scratch fundamental knowledge of app development as well as of the Bluetooth® LE
standard is required.

5.1 Connection setup message charts

The following message charts show which steps are run during the connection setup process
between two Proteus-II modules. To implement the central role in an app to connect to the
Proteus-II peripheral the steps of the central device shown below have to be reproduced.
More detailed information can be found in the message chart chapter of Nordic Semiconduc-
tor’s documentation of the Softdevice S132 V6.0.0.

5.1.1 No security and authentication

If the Proteus-II peripheral does not use any security settings, we just have to connect to it. After
connecting a MTU request is necessary to allow a higher payload size. After the discovery of
the characteristics, the notification of the RX characteristic has to be enabled.

Figure 1: No security enabled

5.1.2 Just works pairing

If the Proteus-II peripheral needs the just works pairing security level, we just have to place a
just works pairing request (no in/out capabilities, no mitm) after the connection step was run.
Here a MTU request is necessary again to allow a higher payload size. After the discovery of
the characteristics, the notification of the RX characteristic has to be enabled.

9
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

Figure 2: Just works pairing enabled

5.1.3 Static pass key pairing

If the Proteus-II peripheral needs the static pass key pairing security level, we just have to
place a pairing request (keyboard only, mitm) after the connection step was run. The Proteus-II
sends a pass key request, such that the static pass key of the Proteus-II peripheral has to be
entered on the central side (app).
Afterwards a MTU request is necessary again to allow a higher payload size. After the discov-
ery of the characteristics, the notification of the RX characteristic has to be enabled.

10
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

Figure 3: Static pass key pairing enabled

.

11
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

5.2 Enable notifications

As described in the previous chapter 5.1 the final step for a successful connection setup is the
enabling of the notification of the TX_CHARACTERISTIC. To do so, the Android’s Bluetooth® LE
stack offers the following function, that has to be called with the TX_CHARACTERISTIC.

IBluetoothGatt mService;

/** TX NOTIFICATION

* Enable or disable notifications/indications for a given characteristic.

*

* <p>Once notifications are enabled for a characteristic, a

* {@link BluetoothGattCallback#onCharacteristicChanged} callback will be

* triggered if the remote device indicates that the given characteristic

* has changed.

*

* <p>Requires {@link android.Manifest.permission#BLUETOOTH} permission.

*

* @param characteristic The characteristic for which to enable notifications

* @param enable Set to true to enable notifications/indications

* @return true, if the requested notification status was set successfully

*/

public boolean setCharacteristicNotification(BluetoothGattCharacteristic characteristic,

boolean enable) {

if (DBG) {

Log.d(TAG, "setCharacteristicNotification() - uuid: " + characteristic.getUuid()

+ " enable: " + enable);

}

if (mService == null || mClientIf == 0) return false;

BluetoothGattService service = characteristic.getService();

if (service == null) return false;

BluetoothDevice device = service.getDevice();

if (device == null) return false;

try {

mService.registerForNotification(mClientIf, device.getAddress(),

characteristic.getInstanceId(), enable);

} catch (RemoteException e) {

Log.e(TAG, "", e);

return false;

}

return true;

}

Code 1: Example code to enable the TX characteristic notification

Please note that the iOS’s Bluetooth® LE stack calls the corresponding function automatically.
Thus calling a notification enable function from the app’s application layer is not needed.

12
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

5.3 Bonding development hints

The firmware of the Proteus-II provides the bonding feature that allows to re-pair without re-
peating the authentication step (e.g. entering the static passkey). Thus, in the initial connection
all bonding data is stored in the devices’ flash to be used during the setup of subsequent con-
nections.
The function CMD_DELETEBONDS_REQ of the Proteus-II allows to remove not needed bonding data
from the module’s flash. Thus in case of missing bonding data on one of the two connection
partners, a re-bonding has to be initiated by the central device! Otherwise, the security level is
not met to send the "notification enable" and thus the channel for data transmission cannot be
opened.

Please note that iOS devices do not run the re-bonding step by default, if bond-
ing data is missing on one of the two connection partners.
In certain cases, the bonding data on the iOS device has to be cleared first,
such that iOS starts the re-bonding step.

5.4 Nordic Bluetooth LE UART example app as base

Nordic Semiconductor provides source code to develop Android, iOS and Windows applica-
tions. To implement the WE SPP-like profile for your own app, these source codes can be
taken as a base for your own app development.

Please note that this app does not implement any authentication and security
features. Thus, the Proteus-II to connect to must have no security enabled
when using this provided example.
Furthermore, the request for data length extension is not part of the provided
source code.

The following few changes have to be applied to the Nordic UART-APP-example to implement
the SPP-like profile:

• Replace the implemented UUIDs by the SPP-like profile UUID.
Android example:

private final static UUID UART_SERVICE_UUID = UUID.fromString("6E400001-C352-11E5-953

D-0002A5D5C51B");

private final static UUID UART_RX_CHARACTERISTIC_UUID = UUID.fromString("6E400002-

C352-11E5-953D-0002A5D5C51B");

private final static UUID UART_TX_CHARACTERISTIC_UUID = UUID.fromString("6E400003-

C352-11E5-953D-0002A5D5C51B");

Code 2: Update UUID

• When sending data, add the packet header in front of the payload.
Android example:

public void send(final String text) {

// Are we connected?

if (mRXCharacteristic == null)

return;

13
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

if (!TextUtils.isEmpty(text) && mOutgoingBuffer == null) {

final char RF_HEADER_TYPE_DATA = 0x01;

final byte[] buffer = mOutgoingBuffer = (RF_HEADER_TYPE_DATA + text).getBytes();

mBufferOffset = 0;

...

}

Code 3: Add packet header on sender side

public void onDataSent(final String data) {

if (RF_HEADER_TYPE_DATA == data.charAt(0)) {

Logger.a(getLogSession(), "Valid data sent:\"" + data.substring(1) + "\"");

}

else {

Logger.w(getLogSession(), "Invalid data sent:\"" + data + "\"");

}

...

}

Code 4: Check packet header in sender callback

• When receiving data, first interpret the header to detect the data type before any other
action (data output or command execution) is performed.
Android Example:

public void onDataReceived(final String data) {

if (RF_HEADER_TYPE_DATA == data.charAt(0)) {

Logger.a(getLogSession(), "Valid data received:\"" + data.substring(1) + "\"");

}

else {

Logger.w(getLogSession(), "Invalid data received:\"" + data + "\"");

}

...

}

Code 5: Remove packet header on receiver side

14
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

6 Custom firmware development

Using the Proteus-II hardware a custom firmware can be developed to better fit the customer’s
needs. Based on the Nordic Semiconductor SDK and demo examples various Bluetooth® LE
profiles and custom applications can be realized and flashed on the Proteus-II module. The ver-
satile and well documented Nordic stack ensures quick and easy realization of various standard
Bluetooth® LE profiles. Chapter 6.2 contains the information needed to run Nordic standard
examples on the Proteus-II hardware.
On the other hand, Würth Elektronik eiSos provides firmware development services for cus-
tomers that are not interested in writing their own firmware stack. Here, Würth Elektronik eiSos
can quickly adapt the Proteus-II standard firmware to the customer’s need or completely de-
velop a new firmware from scratch (see chapter 6.1).

nRF52

Proteus

A
n

te
n

n
a

GPIO connectors

SWD connector

Firmware
Option 1 or 2

Hardware interfaces
UART, SPI, GPIO, CLK, NFC, I2C, Interrupts, …

Option 1: SPP-like Firmware

User application code
SPP-like Bluetooth profile,

OTA firmware updates,
command interface,

edit user settings

SoftDevice
BT Stack,

GAP, GATT

Development
environment

Segger Embedded
Studio, Keil, IAR, plus
J-Link flash adapter

(or compatible)

Manual,
advanced user
guide, support

Option 2: Custom Development

Option 1: delivery state

free code demos,
all BLE profiles,
flash software,

developer forum

SoftDevice
BT Stack,

GAP, GATT

Option 2: via SWD interface

Figure 4: Options for running the Proteus-II with standard or custom firmware

6.1 Custom firmware services of Würth Elektronik eiSos

The Proteus-II firmware as described in the Proteus-II manual includes the Softdevice, a dual-
bank bootloader and the application hosting the SPP-like protocol for RF communication. After

15
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

flashing this firmware onto the chip, there are up to 128kB free memory for custom applications
that can be included into the firmware on request.
If more memory is needed, the dual-bank bootloader can be replaced by a single-bank boot-
loader or even completely removed. In this case, more than 300kB of memory can be reserved
for custom application code. As an alternative external Flash/EEPROM IC(s) can be connected
to the module (e.g. using SPI or I2C interface) on the customer PCB.

Source codes for the Proteus-II SPP-like firmware are property of Würth Elek-
tronik eiSos and will not be provided to customers. Nonetheless, Würth Elek-
tronik eiSos may consider different license models or exceptions for individual
customers.

Besides of this, Würth Elektronik eiSos also provides custom firmware developments from
scratch. Please contact your local field sales engineer (FSE) or WCS@we-online.com to dis-
cuss further details.

6.2 Important information for custom firmware development

To start a custom firmware development on top of the Proteus-II hardware, the following infor-
mation must be considered:

• Chip
The Proteus-II contains the Nordic Semiconductor nRF52832-CHAA SoC. The CPU is a
64MHz ARM Cortex-M4F.

• Pinout
The Proteus-II provides the following pins of the Nordic SoC with its pads. Only the RF ,
GND, VDD, Reset , SWDCLK and SWDIO pins are fixed. All other pins can be used for
custom firmware development. For special functions like near field communication (NFC),
external low frequency quartz crystal XL or analog input (AIN) the respective pins have
to be used. Please check the nRF52832 product specification [1] for all details regarding
the pins, dependencies and possible functions of the Nordic chip set.

No. Pad Name No. Pad Name
1 RF 9 P0.09/NFC1

2, 17 GND 10 P0.00/XL1
3 SWDCLK 11 P0.01/XL2
4 SWDIO 12 P0.02/AIN0
5 P0.21/Reset 13 P0.03/AIN1
6 P0.05/AIN3 14 P0.04/AIN2
7 VDD 15 P0.28/AIN4
8 P0.10/NFC2 16 P0.29/AIN5

16
Version 1.4, July 2023 www.we-online.com/wcs

mailto:WCS@we-online.com
http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

Figure 5: Pinout

• Hardware for development & debugging
Using Segger J-Link flasher and the SWD interface is required for firmware development
and debugging. Checkout the Proteus-II-EV board. It provides the easiest way to develop
software based on Proteus-II module or apps for the SPP-like profile.

• Software development environment
Nordic Semiconductor provides software packages for several compilers (KEIL, IAR,
GCC, Segger Embedded).
For example, the Keil SDK includes the required Bluetooth® LE stack ("Softdevice"), many
demo examples for Bluetooth® LE profiles and services to conveniently develop a custom
firmware on basis of the Nordic SoC. Further library’s for hardware peripheral (such as
ADC, I2C, SPI, UART etc.) are also include in the SDK and examples. More information
and details about the chip and the operating system is bundled on the Nordic Semicon-
ductor Infocenter:
http://infocenter.nordicsemi.com/

Please check the tab "nRF52 Series" to access the newest information about the nRF52
radio chip and the software environment.
If available, use the examples for the Nordic evaluation platform (like PCA10040 or PCA10056)
as a starting point. See also chapter 6.2.1 for more information how to run Nordic stan-
dard examples on top of the Proteus-II.

• Clock sources
The Proteus-II module contains a dedicated RF clock (HFCLK). The Proteus-II does not
contain a dedicated low frequency clock (LFCLK). Thus custom firmware must use the

17
Version 1.4, July 2023 www.we-online.com/wcs

http://infocenter.nordicsemi.com/
http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

internal RC-oscillator as long as no external clock crystal is connected to the respective
pins (XL1, XL2) on the customer PCB.
Example for enabling the internal RC oscillator for SDK 15.3.0:

// <o> NRF_SDH_CLOCK_LF_SRC - SoftDevice clock source.

// <0=> NRF_CLOCK_LF_SRC_RC

// <1=> NRF_CLOCK_LF_SRC_XTAL

// <2=> NRF_CLOCK_LF_SRC_SYNTH

#ifndef NRF_SDH_CLOCK_LF_SRC

#define NRF_SDH_CLOCK_LF_SRC 0

#endif

// <o> NRF_SDH_CLOCK_LF_RC_CTIV - SoftDevice calibration timer interval.

#ifndef NRF_SDH_CLOCK_LF_RC_CTIV

#define NRF_SDH_CLOCK_LF_RC_CTIV 16

#endif

// <o> NRF_SDH_CLOCK_LF_RC_TEMP_CTIV - SoftDevice calibration timer interval under

constant temperature.

// <i> How often (in number of calibration intervals) the RC oscillator shall be

calibrated

// <i> if the temperature has not changed.

#ifndef NRF_SDH_CLOCK_LF_RC_TEMP_CTIV

#define NRF_SDH_CLOCK_LF_RC_TEMP_CTIV 2

#endif

// <o> NRF_SDH_CLOCK_LF_ACCURACY - External clock accuracy used in the LL to compute

timing.

// <0=> NRF_CLOCK_LF_ACCURACY_250_PPM

// <1=> NRF_CLOCK_LF_ACCURACY_500_PPM

// <2=> NRF_CLOCK_LF_ACCURACY_150_PPM

// <3=> NRF_CLOCK_LF_ACCURACY_100_PPM

// <4=> NRF_CLOCK_LF_ACCURACY_75_PPM

// <5=> NRF_CLOCK_LF_ACCURACY_50_PPM

// <6=> NRF_CLOCK_LF_ACCURACY_30_PPM

// <7=> NRF_CLOCK_LF_ACCURACY_20_PPM

// <8=> NRF_CLOCK_LF_ACCURACY_10_PPM

// <9=> NRF_CLOCK_LF_ACCURACY_5_PPM

// <10=> NRF_CLOCK_LF_ACCURACY_2_PPM

// <11=> NRF_CLOCK_LF_ACCURACY_1_PPM

#ifndef NRF_SDH_CLOCK_LF_ACCURACY

#define NRF_SDH_CLOCK_LF_ACCURACY 1

#endif

Code 6: sdk_config.h

Code may differ when using different SDK version.

• Voltage regulator
As internal voltage regulator, we recommend to use the DCDC instead of the LDO. The
DCDC has to be switched on explicitly in application code. Example for SDK 15.3.0:

sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);

18
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

Code may differ when using different SDK version.

Changing from LDO to DCDC reduces the current consumption of the module to meet
lowest power specifications.

• Certification and Bluetooth®-Listing
Custom firmware may require additional certification. Any (end-)device containing Bluetooth®

IP must be listed by the Bluetooth® SIG which requires membership and qualification.
Please contact the Bluetooth® SIG or your preferred Bluetooth® certification laboratory
for question. Further information are available in the Proteus-II manual [4, 5, 6] and in the
application note ANR027 [2].

To make use of the existing certification and listing of the Proteus-II, it is manda-
tory to use the Bluetooth® stack Nordic Semiconductor S132 Version 6.0.0 .

• Serial number
The unique serial number (used for tracing and the generation of the Proteus-II BTMAC)
is placed in the user information configuration register (UICR->Customer[0]) and will be
removed by flashing a customer firmware onto the SoC.

19
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

6.2.1 How to adapt Nordic Semiconductor SDK examples to run on the Proteus-II
hardware?

The following description is based on the SDK 15.3.0. Code may differ when
using a different Softdevice and/or SDK version.

Please perform the following steps to run a Nordic standard example on the Proteus-II:

1. Open the example project of interest and compile.

2. In case of success1, enable the DCDC by adding the following line at the end of the stack
init function.

static void ble_stack_init(void){

.

.

.

// Enable DCDC

err_code = sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);

APP_ERROR_CHECK(err_code);

}

3. If no external crystal has been connected to the radio module, enable the internal RC-
oscillator as shown in code example 6.

4. Go to the file board.h and add the include for the Proteus-II.h board file.
#if defined(BOARD_PCA10040)

#include "pca10040.h"

#elif defined(BOARD_PROTEUSI)

#include "ProteusI.h"

#elif defined(BOARD_PROTEUSII)

#include "ProteusII.h"

#elif defined(BOARD_PROTEUSIII)

#include "ProteusIII.h"

#else

#error "Board is not defined"

#endif

1If you have a Nordic evaluation board available, please check that the original example without modifications
runs successfully on the Nordic evaluation board.

20
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

5. Then create the Proteus-II board file. To do so, please copy the board file of the Nordic
evaluation board (like PCA10040 or PCA10056) and add the pinout, led button number-
ing, button numbering and clock definition of the Proteus-II:

#ifndef PROTEUSII_H

#define PROTEUSII_H

/* PINS of the nRF52:

* The pins are named w.r.t their function in the PROTEUSII standard firmware

*/

#define NRF_PIN_LED_1 0

#define NRF_PIN_LED_2 1

#define NRF_PIN_UARTTX 2

#define NRF_PIN_UARTRX 3

#define NRF_PIN_UARTRTS 4

#define NRF_PIN_BOOT 5

#define NRF_PIN_6 6

#define NRF_PIN_7 7

#define NRF_PIN_8 8

#define NRF_PIN_CUSTOM_9 9 /* corresponds to PROTEUSII_PIN_9 */

#define NRF_PIN_OPERATIONMODE 10 /* corresponds to PROTEUSII_PIN_8 */

#define NRF_PIN_11 11

#define NRF_PIN_12 12

#define NRF_PIN_13 13

#define NRF_PIN_14 14

#define NRF_PIN_15 15

#define NRF_PIN_16 16

#define NRF_PIN_17 17

#define NRF_PIN_18 18

#define NRF_PIN_19 19

#define NRF_PIN_20 20

#define NRF_PIN_RESET 21

#define NRF_PIN_22 22

#define NRF_PIN_23 23

#define NRF_PIN_24 24

#define NRF_PIN_25 25

#define NRF_PIN_26 26

#define NRF_PIN_27 27

#define NRF_PIN_UARTCTS 28

#define NRF_PIN_SLEEP 29

#define NRF_PIN_30 30

#define NRF_PIN_31 31

// LEDs definitions for PROTEUSII

#define LEDS_NUMBER 0

#define LEDS_LIST {NRF_PIN_LED_1, NRF_PIN_LED_2}

#define BSP_LED_0 NRF_PIN_LED_1

#define BSP_LED_1 NRF_PIN_LED_2

/* all LEDs are lit when GPIO is low */

#define LEDS_ACTIVE_STATE 1

#define LEDS_INV_MASK LEDS_MASK

// Buttons definitions for PROTEUSII

#define BUTTONS_NUMBER 0

#define BUTTONS_LIST {NRF_PIN_SLEEP}

#define BSP_BUTTON_0 NRF_PIN_SLEEP

21
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

#define BUTTON_PULL NRF_GPIO_PIN_PULLUP

#define BUTTONS_ACTIVE_STATE 0

// UART definitions for PROTEUSII

#define RX_PIN_NUMBER NRF_PIN_UARTRX

#define TX_PIN_NUMBER NRF_PIN_UARTTX

#define RTS_PIN_NUMBER NRF_PIN_UARTRTS

#define CTS_PIN_NUMBER NRF_PIN_UARTCTS

// Low frequency clock source to be used by the SoftDevice

#define NRF_CLOCK_LFCLKSRC {\

.source = NRF_CLOCK_LF_SRC_RC,\

.rc_ctiv = 16,\

.rc_temp_ctiv = 2,\

}

#endif // PROTEUSII_H

Code 7: Content of the ProteusII.h

6. In the project options, we need to link to the Proteus-II hardware instead to the Nordic
evaluation board hardware. This can be done by adding "BOARD_PROTEUSII" macro
and by removing the respective macro of the Nordic platform in the precompiler options
of the project.

7. Then check that the application code uses the pins names defined in the Proteus-II.h .
Probably peripheral pins (UART, SPI,...), LED pins and/or button pins have to be adapted
to fit the pin definition of the Proteus-II.h .

Please make sure that the selected pin number and its function matches the
underlying hardware (e.g. evaluation board Proteus-II-EV).

8. Now all necessary changes have been done. Thus recompile the whole project and check
for errors.

9. In case of success, erase the whole chip and flash ONLY the Softdevice onto the chip.
The J-Flash tool can be used to do so.

10. After this, flash the compiled project code onto the chip using Keil (or the IDE of your
choice) without erasing the flash area of the Softdevice.

11. Now, the whole code has been flashed and testing can start.

6.2.2 Firmware development hints

When creating a custom firmware the following hints may be useful during development:

• In standard Nordic examples, the Reset pin is hard coded. We recommend using the pin
definition of the board-file to guarantee that changes in the layout take effect.

22
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

• After the chip was flashed or when a clock signal was applied to the SWCLK pin, the chip
is in debug mode. In this case, all chip states are simulated. Please repower the chip to
be in normal mode to test modes like the system off mode (especially when you want to
measure currents of a low power mode).

• Reviewing the pin settings (direction, pull-up/-down resistors) of the firmware is the first
option when experiencing leakage current.

• The UART RX pin is quite sensitive towards wrong levels during UART start-up. A floating
UART RX pin of the SoC may result in unwanted behavior. In this case, an internal or
external pull-up resistor can be installed to prevent floating. Be aware that this resistor
will lead to leakage current.

• The NFC pins are optimized for NFC function and can lead to leakage current when not
used properly in GPIO mode.

• To use module pins that support the NFC function as normal GPIOs, the NFC function
must be disabled at compile time. To do so, the macro CONFIG_NFCT_PINS_AS_GPIOS
has to be defined in the project preprocessor options. Otherwise, the respective pins are
blocked for GPIO usage.

• Checkout the errata sheet of the nRF52 SoC to have an overview of known issues with
the nRF52 SoC and possible software workarounds.

• Checkout the sections "Known issues" of the used SDK and soft device versions to be
aware of potential issues.

23
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

7 References

[1] Nordic Semiconductor. Nordic nRF52832 resources. https://www.nordicsemi.com/

products/nrf52832.

[2] Würth Elektronik. Application note 27 - Bluetooth listing guide. http://www.we-online.

com/ANR027.

[3] Würth Elektronik. Application note 6 - Proteus high throughput mode. http://www.

we-online.com/ANR006.

[4] Würth Elektronik. Proteus-I user manual. https://www.we-online.de/katalog/de/

manual/2608011024000.

[5] Würth Elektronik. Proteus-II user manual. https://www.we-online.de/katalog/de/

manual/2608011024010.

[6] Würth Elektronik. Proteus-III user manual. https://www.we-online.de/katalog/de/

manual/2611011024000.

24
Version 1.4, July 2023 www.we-online.com/wcs

https://www.nordicsemi.com/products/nrf52832
https://www.nordicsemi.com/products/nrf52832
http://www.we-online.com/ANR027
http://www.we-online.com/ANR027
http://www.we-online.com/ANR006
http://www.we-online.com/ANR006
https://www.we-online.de/katalog/de/manual/2608011024000
https://www.we-online.de/katalog/de/manual/2608011024000
https://www.we-online.de/katalog/de/manual/2608011024010
https://www.we-online.de/katalog/de/manual/2608011024010
https://www.we-online.de/katalog/de/manual/2611011024000
https://www.we-online.de/katalog/de/manual/2611011024000
http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

8 Important notes

The Application Note and its containing information ("Information") is based on Würth Elek-
tronik eiSos GmbH & Co. KG and its subsidiaries and affiliates ("WE eiSos") knowledge and
experience of typical requirements concerning these areas. It serves as general guidance and
shall not be construed as a commitment for the suitability for customer applications by WE
eiSos. While WE eiSos has used reasonable efforts to ensure the accuracy of the Information,
WE eiSos does not guarantee that the Information is error-free, nor makes any other repre-
sentation, warranty or guarantee that the Information is completely accurate or up-to-date. The
Information is subject to change without notice. To the extent permitted by law, the Information
shall not be reproduced or copied without WE eiSos’ prior written permission. In any case,
the Information, in full or in parts, may not be altered, falsified or distorted nor be used for any
unauthorized purpose.

WE eiSos is not liable for application assistance of any kind. Customer may use WE eiSos’
assistance and product recommendations for customer’s applications and design. No oral or
written Information given by WE eiSos or its distributors, agents or employees will operate to
create any warranty or guarantee or vary any official documentation of the product e.g. data
sheets and user manuals towards customer and customer shall not rely on any provided Infor-
mation. THE INFORMATION IS PROVIDED "AS IS". CUSTOMER ACKNOWLEDGES THAT
WE EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND RELATED
TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES’ INTELLEC-
TUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR A PURPOSE
OR USAGE. WE EISOS DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EI-
THER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT,
MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT RELATING TO ANY
COMBINATION, MACHINE, OR PROCESS IN WHICH WE EISOS INFORMATION IS USED.
INFORMATION PUBLISHED BY WE EISOS REGARDING THIRD-PARTY PRODUCTS OR
SERVICES DOES NOT CONSTITUTE A LICENSE FROM WE eiSos TO USE SUCH PROD-
UCTS OR SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

The responsibility for the applicability and use of WE eiSos’ components in a particular cus-
tomer design is always solely within the authority of the customer. Due to this fact it is up
to the customer to evaluate and investigate, where appropriate, and decide whether the de-
vice with the specific characteristics described in the specification is valid and suitable for the
respective customer application or not. The technical specifications are stated in the current
data sheet and user manual of the component. Therefore the customers shall use the data
sheets and user manuals and are cautioned to verify that they are current. The data sheets
and user manuals can be downloaded at www.we-online.com. Customers shall strictly observe
any product-specific notes, cautions and warnings. WE eiSos reserves the right to make cor-
rections, modifications, enhancements, improvements, and other changes to its products and
services at any time without notice.

WE eiSos will in no case be liable for customer’s use, or the results of the use, of the com-
ponents or any accompanying written materials. IT IS CUSTOMER’S RESPONSIBILITY TO
VERIFY THE RESULTS OF THE USE OF THIS INFORMATION IN IT’S OWN PARTICULAR
ENGINEERING AND PRODUCT ENVIRONMENT AND CUSTOMER ASSUMES THE ENTIRE
RISK OF DOING SO OR FAILING TO DO SO. IN NO CASE WILL WE EISOS BE LIABLE FOR

25
Version 1.4, July 2023 www.we-online.com/wcs

www.we-online.com
http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

CUSTOMER’S USE, OR THE RESULTS OF IT’S USE OF THE COMPONENTS OR ANY AC-
COMPANYING WRITTEN MATERIAL IF CUSTOMER TRANSLATES, ALTERS, ARRANGES,
TRANSFORMS, OR OTHERWISE MODIFIES THE INFORMATION IN ANY WAY, SHAPE OR
FORM.

If customer determines that the components are valid and suitable for a particular design and
wants to order the corresponding components, customer acknowledges to minimize the risk of
loss and harm to individuals and bears the risk for failure leading to personal injury or death
due to customers usage of the components. The components have been designed and devel-
oped for usage in general electronic equipment only. The components are not authorized for
use in equipment where a higher safety standard and reliability standard is especially required
or where a failure of the components is reasonably expected to cause severe personal injury
or death, unless WE eiSos and customer have executed an agreement specifically governing
such use. Moreover WE eiSos components are neither designed nor intended for use in areas
such as military, aerospace, aviation, nuclear control, submarine, transportation, transporta-
tion signal, disaster prevention, medical, public information network etc. WE eiSos must be
informed about the intent of such usage before the design-in stage. In addition, sufficient re-
liability evaluation checks for safety must be performed on every component which is used in
electrical circuits that require high safety and reliability functions or performance. COSTUMER
SHALL INDEMNIFY WE EISOS AGAINST ANY DAMAGES ARISING OUT OF THE USE OF
THE COMPONENTS IN SUCH SAFETY-CRITICAL APPLICATIONS.

26
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

WIRELESS CONNECTIVITY & SENSORS
ANR005 - Proteus-II Advanced developer guide

List of Figures

1 No security enabled . 9
2 Just works pairing enabled . 10
3 Static pass key pairing enabled . 11
4 Options for running the Proteus-II with standard or custom firmware 15
5 Pinout . 17

List of Tables

1 RF-packet format to transmit data . 8
2 RF-packet format for fragmented data of the high throughput mode (see ANR006 [3]) 8

27
Version 1.4, July 2023 www.we-online.com/wcs

http://www.we-online.com/wcs

Contact
Würth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors

Max-Eyth-Straße 1
74638 Waldenburg
Germany

Tel.: +49 651 99355-0
Fax.: +49 651 99355-69
www.we-online.com/wireless-connectivity

	Introduction
	Prerequisites
	Bluetooth profiles
	WE SPP-like profile
	Generic Access Protocol (GAP)
	Generic Attribute Profile (GATT)
	Data length extension
	Company identifier
	UUID
	Primary Service
	Characteristics

	Bluetooth LE packet content
	RF-Packet format
	Advertising packet content
	Scan response packet content

	App development
	Connection setup message charts
	No security and authentication
	Just works pairing
	Static pass key pairing

	Enable notifications
	Bonding development hints
	Nordic Bluetooth LE UART example app as base

	Custom firmware development
	Custom firmware services of Würth Elektronik eiSos
	Important information for custom firmware development
	How to adapt Nordic Semiconductor SDK examples to run on the Proteus-II hardware?
	Firmware development hints

	References
	Important notes

